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In 2023, the Earth experienced its hottest year in recorded history, primarily due to the burning of 

fossil fuels and land-use change.1 To reduce future heating, more than 190 nations have agreed on 

the necessity of reducing the greenhouse gas (GHG) pollution that causes climate change.2 Yet that 

pollution—and temperatures—continue to rise. With higher temperatures have come more extreme 

weather events, such as deeper droughts, more intense storms, bigger wildfires and extended heat 

waves. Sea-level rise has also accelerated. These climate-worsened events have caused economic 

damage. Researchers estimate that from 2000 to 2019, 185 climate-worsened events caused $2.86 

trillion in global damages, averaging $143 billion per year, a figure the researchers say likely 

underestimates the full harm.3 

Even if nations succeed in aggressively cutting GHG emissions, accumulated atmospheric pollution 

will continue to drive new climate-worsened extremes for at least the next few decades. Those 

extremes require humans to adapt. Climate adaptation involves preparing for and building resilience 

to the current and looming impacts of climate change. Adaptation efforts can protect lives, 

livelihoods, infrastructure and ecosystems. They can also save money. According to the Global 

Commission on Adaptation, investments in adaptation carry a high rate of return: an estimated $2 to 

$10 or more for every $1 spent.4 

Adaptation can take many forms, over many different timescales. On the scale of years to decades, 

the construction of climate-resilient physical infrastructure—such as power grids, roads, and flood 

and heat protection measures—can ensure continuity of critical services during extreme weather. On 

the scale of months, improved management of seasonal agriculture planting and harvesting can 

ensure food supplies. And on short timescales (days to weeks) improved forecasting and early 

warning serves as one of the most important adaptation measures to reduce economic damage and 

save lives. This chapter explores how artificial intelligence (AI) can enhance adaptation in the 

essential area of forecasting and early warning of extreme weather events, including wildfires and 

extreme flooding. 

A. Forecasting and Early Warning 

Accurate weather data and forecasting can assist people in adapting to climate change by giving 

them additional time to prepare for damaging events. For example, in the near term, storm forecasts 

can provide people time to seek shelter or evacuate and take resilience measures to reduce damage 

to structures, like removing flammable materials outside and protecting windows from high winds. 

Similarly, near-term forecasts can aid utilities in managing electricity production and transmission 

during extreme heat events. Seasonal forecasts can assist farmers in making better decisions as to 

when to irrigate, plant and harvest. They can also inform continuity planning for businesses worried 

about weather disruptions to supply chains. Multi-year forecasts can help building owners and city 

planners make informed decisions about where and how to build facilities that can withstand 

climate-worsened extremes.  

In recent years, near-term forecasting has attracted significant attention. Improved forecasting of 

impending extreme events saves lives when coupled with early warning. These systems can also 

empower people to take action to reduce the risk of economic harm from worsening climate 
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extremes. For example, people could move livestock to higher ground as storms approach or shut 

down electricity production as winds increase the risk of downed wires sparking wildfire.  

The safety and economic benefits of improved weather forecasts are large. One World Bank analysis 

estimated that early warning systems could reduce annual deaths from weather events and cut 

economic losses from disasters by $35 billion per year.5 In the US, forecasting improvements since 

2007 have saved an average of $5 billion per hurricane.6 However, about a third of the world’s 

population lives in areas without early warning systems.7 Countries that have limited or only modest 

weather forecasting and early warning coverage suffer disaster-related deaths at nearly six times the 

rate of countries with better coverage.8  

In 2022, the United Nations called for a concerted global effort to improve early warnings for all by 

2027.9 The number of countries with early warning systems has increased since 2015 when the 

World Meteorological Organization (WMO) and other international groups launched the Climate Risk 

and Early Warning Systems initiative. This initiative aimed at increasing the capacity of least-

developed and small-island nations to generate early warnings for seventeen hazards, ranging from 

flood to drought to sand and dust storms. In some places coverage includes seasonal outlooks.10 But 

only about half of all nations currently have adequate systems, with many countries in Africa, the 

Caribbean, the Americas and the Pacific experiencing significant gaps in coverage.8  

Weather forecasting has improved in recent years with the help of increased satellite data, better 

algorithms and evolving understanding of weather patterns.8 However, climate change has made 

forecasting more complex because it is shifting traditional weather patterns and changing the 

frequency and intensity of extreme weather events.11 There is considerable uncertainty about 

whether this shift will impact the accuracy of weather forecasting. Stanford University researchers 

found that for every Celsius degree of warning, the reliable forecast window may decrease in certain 

locations.12 However, other researchers argue that a changing climate does not inherently lead to 

more difficulty in making predictions or less accurate weather predictions.13 The introduction of AI-

based weather forecasting models further complicates this picture. 

B. Changing Risk Picture 

Despite continuing improvements in 

forecasting, escalating risks and damage 

from climate-worsened events sharpens the 

need for improved forecasting and early 

warning. Damage from climate extremes has 

climbed in recent years and is predicted to 

continue to rise. In 2023 alone, the United 

States suffered almost $95 billion dollars in 

damages from 28 separate extreme events.14 

By 2050, “global annual damages are 

estimated to be at 38 trillion dollars 
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annually.”15 According to World 

Bank data, five health risks 

worsened by a warmer climate 

could lead to at least 21 million 

deaths by 2050.16  

Consider the changing risk 

picture for wildfire. Climate 

change brings higher 

temperatures that can reduce 

humidity in the air, which in 

turn can dry out vegetation and 

lower soil moisture content. It 

also can produce intense winds. 

All these factors can lead to 

bigger and more intense wildfires. According to an analysis of satellite data, the frequency of 

extreme fires has more than doubled from 2003 to 2023. An explosion of extreme fires has occurred 

in Canada, the United States and Russia.17 Some parts of the western United States experience two 

more months of wildfire weather than a century ago.18 The UN Environment Programme estimates 

the number of wildfires will increase 50 percent by 2100.19  

Climate change has similarly altered the risk picture for flooding. A warmer atmosphere can hold 

more moisture. This increase can lead to extreme rainfall, otherwise known as “rain bombs,” that 

overwhelm existing flood infrastructure. Changing snowmelt patterns from higher temperatures can 

extend flood seasons in some areas. Higher ocean temperatures mean that storms can pull in more 

water vapor and heat, leading to stronger winds, higher storm surge and heavier rainfall. All of this 

can lead to more flooding when storms make land fall. Rising sea levels also add to tidal and coastal 

flood risk. Ocean warming can cause hurricanes to intensify more rapidly, leaving people less time to 

prepare. Scientists predict that climate change will drive greater flooding in the future. For example, 

according to the Human Climate Horizons platform, a collaboration between the Climate Impact Lab 

and the United Nations Development Programme (UNDP), in the past two decades, sea level rise 

alone has expanded the areas prone to flooding to places where over 14 million people live. By 2100, 

flood-prone areas will expand to places populated by over 73 million people.19  

C. How Can AI Improve Forecasting? 

AI can significantly enhance the accuracy of weather forecasting and reduce the cost and energy 

consumption of running forecasting computer models. Current state-of-the-art conventional 

medium-range weather forecasting models include the Global Forecast System (GFS) of the US 

National Oceanic and Atmospheric Administration (NOAA)14 and the Integrated Forecasting System 

(IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF).20 These numerical 

weather prediction (NWP) models solve complex physics-based equations for atmospheric, ocean 

and land behavior using best available science for the underlying interactions of heat, pressure, 

moisture and other fundamental physical and chemical parameters. 
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Typically, a single “run” of these models starts with the most recent observational data from 

satellites and weather stations and then calculates solutions for the equations at each hour in the 

future, up to 10–14 days in advance. Because weather systems are constantly changing, the error in 

the forecast grows dramatically at later times, using current models.21 Spatially, the model calculates 

the solutions at each location on a global grid with horizontal spacing of ~13 km at the surface and 

roughly 100 vertical layers throughout the atmosphere. The solution outputs include temperature, 

pressure, wind speed, precipitation, soil moisture and many other variables. 

National weather services, such as NOAA, run their primary medium-range weather model several 

times in a single day, using updated observational data each time, and continually release revised 

forecasts. Because of the size and complexity of these models, they require supercomputers and may 

take several hours to complete, consuming large amounts of energy in the process. (See Box 14-1.) 

These models could run faster if they used a sparser grid (e.g., only producing solutions every 20–30 

km) or less frequent time intervals (e.g., only producing solutions for 2-hour intervals rather than 

hourly), but this would reduce the quality and value of the forecasts.  

Many countries are unable to afford the supercomputing facilities and expert meteorology teams 

required to run these state-of-the-art weather models. The high cost and large energy consumption 

of conventional weather models has driven much of the interest in developing AI-based weather 

models. In general, these models run with vastly smaller computing power, meaning they could 

potentially use higher-resolution spatial grids and shorter time steps and/or be updated more 

frequently compared to conventional models. However, for this to be a widely accepted approach, 

AI-based weather models must demonstrate that they can achieve similar or better accuracy than 

conventional models, which use a full simulation of key atmospheric physics and chemistry 

equations. 
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In 2023, Huawei, a Chinese 

communications technology 

conglomerate, released the first AI-

based weather model that not only 

matched the accuracy of 

conventional models, but significantly 

outperformed them.22 Instead of 

using physics-based equations, 

Huawei’s PanguWeather (PGW) is 

based on a deep neural network 

trained on almost 40 years of historical observed weather data (ERA523). This enables it to emulate 

the statistical patterns hidden in that dataset. Compared to the ECMWF’s IFS model, it has smaller 

error in most cases (i.e., the forecasted weather vs the actual weather). Given the need for accuracy 

in forecasts, this result helped galvanize interest in AI-based weather forecasting.  

PGW also runs approximately 10,000 times faster than IFS, a huge reduction in cost and energy 

consumption. Ongoing studies of PGW (which is open source for noncommercial use) in an 

operational environment show that, for many tasks, its accuracy is comparable to IFS or better (still 

at vastly lower compute cost), although it underperforms in others.24  

Since the release of PGW, several other companies have released AI-based weather forecasting 

models, including GraphCast by Google, an American technology company. GraphCast also performs 

very well compared to IFS in many contexts.25 While private technology companies have largely 

driven the development of these models, government agencies have directly collaborated on their 

development in some cases. For example, the ECMWF worked with Google to develop GraphCast, 

and NASA is collaborating with IBM to release the Prithvi-weather-climate model.26 

AI-based weather forecasting models can assist in a variety of adaptation-related tasks, including 

extreme weather forecasting coupled with early warnings. The low cost and improved accuracy of AI-

based weather forecasting could potentially make the UN goal of “early warning for all by 2027” 

more achievable. 
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Box 14-1 

Energy Consumption of AI-Based Weather 
Forecasting Models 
AI-based weather models consume much less energy on a life-cycle basis than conventional weather 
models. Although they require large amounts of energy to train, they consume very little energy to use 
for weather forecasting (approximately 1000x less than conventional models). This dramatic energy 
benefit can translate into lower costs and can help improve access to weather forecasting globally. 

AI models consume energy during two main phases of their life-cycle: training and use (or “inference”). 
During training, the parameters of an AI model (which may number in the billions) are gradually 
adjusted to make the model’s output match patterns in a set of training data. In the case of weather 
forecasting, the training data are historic weather observations, and the goal of training is to “tune” the 
AI model to be able to output the weather patterns that were observed in the past. (In the case of 
LLMs, the training data are thousands to millions of documents spanning many types of writing.) 

Training an AI weather model can consume large amounts of energy. For example, training Google’s 
GraphCast model took approximately 4 weeks (28 days) of continuous processing on 32 TPU v4 devices 

(similar to GPUs).25 Because these devices have an average power consumption of 200 W, the 

electricity consumed in training one version of the model was about 4.3 MWh.27 If this electricity was 

supplied by average US grid power, it would have resulted in 1.7 tCO2 of emissions.28 The overall model 
creation process typically involves repeating this training process several times (at least four versions of 
GraphCast were trained, for comparison), so the total energy consumption could be an order of 
magnitude larger. However, Google (like many other data center operators) supplies some of its data 

center power using renewable energy, so the CO2 emissions may have been substantially lower.29 AI 
weather models will need to be retrained occasionally, consuming additional energy, but this is likely to 
be infrequent. 

Using a trained AI weather model to make a single forecast consumes far less energy than the training 
phase. The GraphCast model can calculate a 10-day weather forecast in under 1 minute on a single 
TPU,25 implying that the electricity consumption for making this forecast is only a few Watt-hours, or 
approximately 1 million times less than the training phase. Of course, under normal forecasting 
operations the model would run multiple times a day to update forecasts, repeated every day for the 
foreseeable future. Nevertheless, the cumulative electricity consumed during the use phase would 
likely be quite small. 

By contrast, current leading medium-range weather models, such as the European Centre for Medium-
Range Weather Forecasts’ (ECMWF’s) Integrated Forecast System (IFS), take multiple hours to run on a 

large supercomputer and consume tens of kWh per run.30 These models do not require training, so the 
only energy consumption is during the use phase (although there are embedded CO2 emissions from 
producing the dedicated supercomputing equipment). These comparisons must be viewed carefully 
because the models do not necessarily produce solutions at the same spatial resolution; however, the 
general comparison is broadly correct. 
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In addition to predicting extreme weather events, related AI-based models can increasingly provide 

early warning for river flooding and wildfires. For example, Google and ECMWF recently collaborated 

to demonstrate a flood prediction model based on a deep neural network that can predict river flood 

events with a five-day lead time and comparable accuracy to same-day lead time predictions from 

the conventional Global Flood Awareness System.31,32 Google now makes predictions available for 

free and in real time to dozens of countries.33  

Companies have also developed AI models to predict where wildfires are likely to ignite. For example, 

Athena Intelligence’s model aims to identify the probability of a wildfire occurring within a specific 

geographic area, the potential severity and intensity of that wildfire, and the potential losses if such a 

wildfire were to happen. AI-driven prediction models primarily use remote sensing data, and recent 

results are quite promising in terms of both high accuracy and low computational cost.20,34 Some 

emerging use cases of AI for wildfire focus more on early/rapid detection of new wildfires. This 

includes systems in several US states, including California and Oregon, that use networks of cameras 

and AI to automatically identify wildfires soon after they ignite. These systems aim to optimize 

allocation of scarce firefighting resources and potentially extinguish fires before they spread.35,36 In 

Türkiye, the World Economic Forum (WEF) has worked to develop the FireAId program, which uses 

AI to create an interactive map of fire risk. That initiative has predicted wildfire outbreaks 24 hours in 

advance with high accuracy.37 

Longer-term forecasts also help climate adaptation, including efforts to limit crop failures during 

droughts. The time horizon for useful predictions of these events runs from weeks to months since 

adaptation actions, such as food shipments or water conservation, take this long to implement. 

Application of AI to drought prediction has begun to make significant progress, although important 

challenges remain.38-41 Several government-led projects focus on applying AI to prediction of 

drought, including the European Space Agency’s AI for Drought project42 and NASA’s TERRAHydro 

software system.43 The AI for Drought initiative has downscaled existing satellite-based drought 

prediction estimates to make them higher resolution and thus more geographically precise.44 

D. Barriers  

Despite the ability of AI to improve forecasting and early warnings, barriers to adoption remain. 

Those barriers include insufficient data and technical expertise and capacity, lack of confidence, lack 

of supporting infrastructure, and financial constraints. 

i. Insufficient Data  

AI systems are only as good as the data used to train them.45 Limited or incomplete data for certain 

weather conditions can impair accuracy. Since AI models rely on historical data, they may struggle 

with the more extreme, record-breaking events that climate change brings.46 This challenge becomes 

even more acute in developing countries that lack high-resolution observational data about 

atmospheric or other conditions. For example, India has close to 10,000 glaciers in the Himalayas, yet 

it has detailed in situ data on only 30 of those.47 Inaccurate or incomplete data can degrade the 

quality of predictions.48 While satellite-derived datasets on important parameters, such as land 
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surface temperature and vegetation, 

are globally available, other important 

input parameters for training data 

sets are far more available in 

developed countries than in 

developing ones.49  

Although the WMO has pushed for 

greater standardization of observing 

practices and instrumentation, when 

it comes to weather forecasting, 

different countries use different 

technologies and have different 

hardware standards. Differences arise in the level of resolution, with some countries prioritizing high-

resolution localized forecasts while others focus on broader forecasting. Countries also use different 

combinations of data sources, be it on-the-ground observations or satellite data. And of course, 

some countries lack sufficient resources and technology to support robust weather forecasting, with 

high-income countries enjoying more accurate forecasts as a result. 

ii. Insufficient Technical Expertise and Capacity 

Human expertise is essential for interpreting results and handling complexities that AI models may 

not be able to interpret. Currently only a limited pool of human capital and expertise exists. The lack 

of talent is particularly challenging for public agencies since they often cannot compete with private 

salaries. This will make it imperative for governments to invest in recruiting, training and retaining AI 

experts. 

iii. Lack of Confidence 

With AI weather-forecasting models, results are not easily traced back to the tens of millions of 

underlying assumptions upon which they rest.46 These models are a “black box”, often lacking 

transparency as to how conclusions are reached. Thus, some meteorologists may be hesitant to rely 

on AI-based predictions since, if they are wrong, it is difficult to understand why. This issue is the 

focus of substantial research, and more “interpretable” AI models may eventually be developed.50 

For example, in the United States, NOAA has taken a cautious approach to adopting recent 

technologies, including AI, although it is working to integrate AI and understand the opportunities 

and obstacles.51 

iv. Lack of Supporting Infrastructure 

Translating forecasts into actionable information requires supporting infrastructure. For example, 

ready access to the internet can speed dissemination and receipt of warnings based on a storm 

forecast. But some communities and individuals may lack internet access, or power failures may 

impede dissemination.8 Currently only about 20 percent of poor nations have a plan to act on early 

warnings as compared to about half of the nations in the Asia-Pacific region.52 
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v. Financial Constraints 

Lack of adequate funding will remain a challenge, both for research and development (R&D) of early 

warning systems and for their deployment and use. Establishing an early warning system takes 

money. So does maintenance of the system. Developing complex AI models requires significant 

computational resources (although they require far fewer to use operationally).48 Because weather 

patterns and climate conditions are dynamic, AI models also need updating and retraining to capture 

the latest information.48 

Government agencies will likely require additional funding to evaluate emerging technologies for 

accuracy and reliability. Given the speed with which these technologies are changing, the need for 

funding could increase over time. 

E. Risks  

While the accuracy of some flagship AI medium-term weather models is high, they do not currently 

perform as well as conventional models in some areas, such as forecasting tropical cyclone 

intensity.24 They may need to be deployed in combination with conventional models, with the 

forecasts integrated or synthesized. 

The relative ease and low cost of AI-based weather forecasting may undermine support for public 

meteorological agencies, as some policymakers may conclude that they are no longer necessary. 

Lack of adequate funding could undermine the ability of public meteorological agencies to assess and 

understand the performance of AI-based models and to collect the observational data on which 

these models are based. This in turn could increase dependency on private sector companies for the 

public service of weather forecasting. 

While major private companies currently offer these flagship AI weather models as open source, that 

could change in the future. Legislators should carefully weigh the appropriate role of public funding 

as opposed to private development.  
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F. Recommendations  

1. National governments, international organizations, and the private sector should invest in AI 

models that increase accuracy, improve the timeliness and reduce the cost of extreme weather 

event forecasts. They should also collaborate on ways to evaluate accuracy and to develop 

frameworks that promote long-term sustainability. 

2. National governments should: 

▪ continue collecting and publishing weather data as a foundational public service; 

▪ provide a base level of access for poorer communities and countries;  

▪ explore innovative programs to attract the necessary talent to lead public AI systems (this 

could include government-sponsored fellowships, additional compensation and opportunities 

for continued education); 

▪ integrate AI training into professional development programs for meteorologists and climate 

scientists working in public sector weather agencies; 

▪ ensure robust understanding of the limitations and opportunities of AI-assisted forecasting 

and early warning; and 

▪ promote and construct necessary infrastructure to disseminate forecasts and warnings 

effectively. 

3. National governments and international organizations should develop the capacity to build and 

use cutting-edge AI-based weather models as those models improve in the years ahead. Public-

private partnerships are important for equity. National governments and international 

organizations should also support the expansion of AI-based early warning systems for extreme 

weather to underserved regions, ensuring equitable access and bridging the gap in global 

forecasting capabilities. 

4. National governments, international organizations, and the private sector should prioritize 

collection and integration of weather and climate data from the global south and provide 

technical support for adopting AI-based forecasting models to countries that have previously 

lacked advanced forecasting capabilities due to resource constraints. 

5. Research institutions and AI developers should prioritize creating AI models that are transparent 

and interpretable to help meteorologists and emergency responders gain trust in AI-generated 

weather predictions. 

6. Emergency management and humanitarian aid agencies should implement AI-driven decision 

support systems to optimize response strategies during extreme weather events, such as 

evacuations or resource allocation, based on real-time data and predictions. 
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