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AI systems need energy. Manufacturing silicon chips requires energy for mining minerals and 

operating complex machinery. Building data centers requires energy for making steel and concrete. 

Training and running AI models requires energy for electricity to power servers. Lighting and cooling 

data centers requires energy for electricity as well. 

This energy use does not necessarily result in significant greenhouse gas (GHG) emissions. When the 

electricity for a data center comes from new solar, wind or nuclear power, for example, the GHG 

emissions from data-center operations are modest. Amazon, Microsoft, Google and Meta—the 

world’s largest data center operators—are among the world’s largest purchasers of renewable 

power.1 However some activities essential for AI—such as making steel and concrete—use only 

modest amounts of low-carbon energy. 

A review of the current literature suggests the following conclusions: 

▪ Current overall impacts of AI on GHG emissions could be positive or negative. Much better 

data collection is needed to assess overall impacts with confidence. 

▪ GHG emissions from generating power for AI operations at data centers and on edge devices 

(“AI operational emissions”) are less than 1%—and perhaps much less than 1%—of global GHG 

emissions.  

▪ AI operational emissions will likely increase in the years ahead. This increase could be modest 

or quite substantial.  

▪ In the medium- to long-term, the overall impacts of AI on GHG emissions could be positive or 

negative. The GHG benefits of using AI throughout the economy could significantly outweigh 

GHG emissions increases due to AI. However, the opposite could occur as well. The impact of 

AI on GHG emissions will depend 

on decisions by policymakers, 

business leaders, researchers and 

others in the years ahead. 

This chapter starts with background on 

GHG emissions from AI and data center 

power demand. With that foundation, 

the chapter examines current and future 

GHG emissions from AI, concluding with 

recommendations.  

A. Background 

The phrase “GHG emissions from AI” is quite broad. It includes: 

▪ AI operational emissions, 

▪ GHG emissions from manufacturing equipment and building infrastructure used for AI (“AI 

upstream emissions”) and 
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▪ The emissions impacts of applying AI in countless thousands of ways throughout the economy, 

some of which reduce GHG emissions (such as the many applications of AI discussed in this 

Roadmap) and some of which increase GHG emissions (such as when AI is used to cut the cost 

of some polluting activities). 

Estimating GHG emissions from AI is challenging, for several reasons. 

First, data collection and assessment methodologies are inadequate. The lack of standardized 

reporting practices and metrics across the AI industry makes it difficult to provide precise and 

confident emissions estimates.2-4 

Second, the shared use of computing resources in cloud environments can make it difficult to isolate 

and accurately attribute emissions to AI-related activities. Data center operators do not routinely 

keep records distinguishing the time a server is running AI-based software from the time a server is 

running non-AI-based software. (Doing so would be difficult.) As a result, it can be challenging to 

correctly allocate overall GHG emissions from computing infrastructure to the subcategory of AI 

applications. 

This challenge is diminished by the increasing use of specialized computing chips, such as graphics 

processing units (GPUs) and tensor processing units (TPUs), which are used almost exclusively for AI-

based software. However allocating emissions from other AI hardware can be a challenge. 

Third, data center emissions are location-specific. A data center’s GHG emissions depend on the fuels 

used to generate electricity for that data center. Many data centers purchase electricity from local 

power grids, and the fuel mix in local power grids varies greatly around the world. To project future 

GHG emissions from data centers, one must make assumptions about not only the increase in overall 

data center power demand but also the locations where data centers will be built and the sources of 

electricity data centers will use. 

Finally, AI is a transformational technology at an early stage of deployment. Forecasting how AI will 

impact many economic processes and societal patterns in the years and decades ahead is difficult if 

not impossible. As a result, forecasting the GHG impacts of AI deployment with high confidence is 

challenging as well.5 

Despite these challenges, a growing body of literature seeks to estimate current and future GHG 

emissions. These studies are essential for understanding and managing AI’s GHG impacts. After 

reviewing the related topic of data center power demand, we examine these studies below. 

B. Data Center Power Demand 

There are roughly 11,000 data centers globally (Aljbour et al, 20246 at p. 11). Roughly half of global 

data center capacity is in the United States, 15% is in Europe and 15% is in China.7 

Data centers are central to the AI industry. Most AI models are trained, tuned and run at data 

centers. Although some AI computation is beginning to move to edge devices, most AI takes place at 

data centers and will continue to do so for the foreseeable future.8-10 
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Data centers perform many functions other than AI—hosting websites, processing financial 

transactions, running email networks and much more. Only a fraction of data center workload is 

attributable to AI. Recent estimates of that fraction vary widely: 

▪ KKR Insights estimates that, today, roughly 35% of the workload at Amazon, Google, Meta and 

Microsoft data centers is for AI and that this figure will rise to more than 50% by 2030.11 

▪ A 2022 paper in Nature Climate Change by Lynn Kaack et al. estimates that “less than one-

quarter” of the workloads and traffic of cloud and hyperscale data centers is related to 

machine learning (ML).3 

▪ FTI Consulting estimates that roughly 10% of data center power demand globally is for AI, 

growing to roughly 25% by 2030.12 

▪ The Electric Power Research Institute (EPRI) estimates that about 10–20% of data center 

electricity use comes from AI applications.13 

▪ A 2024 paper in Communications of the ACM by David Patterson et al. estimates that, from 

2019 to 2021, ML “represented between 10% and 15% of the total annual operational energy 

use in the Google cloud” (Patterson et al., 202414 at p. 88). 

▪ Goldman Sachs estimates that the percentage of data center workload attributable to AI 

globally was less than 1% in 2024 but will increase to roughly 19% by 2028 (see “Data center 

power demand graph15). 

▪ A paper published in Nature by Amy Luers et al. in April 2024 estimates that roughly 1% of data 

center power demand in 2023 came from AI processors.5 

The wide differences in these estimates reflect different definitions of “AI” (with some studies 

focused on generative AI and others on ML more broadly), data gaps, the lack of standard 

measurement protocols and other factors. 

In the past year, data center power demand has received considerable media attention, often in the 

context of the growth of AI.16-18 We explore that topic below. 

i. Current data center power demand  

Data centers use substantial amounts of electricity. To operate a data center, electric power is 

needed for servers, data storage equipment, networking equipment, cooling systems, lighting and 

more.  

In 2023, roughly 1.5% of global electricity demand came from data centers (IEA 202419 at p. 19). In 

the United States, data centers were responsible for 3% of electricity demand.20 The figure was 1–2% 

in Japan,21 3.5% in China22 and 3.5% in the European Union.23  

Although these amounts are significant, they are smaller than the electricity used in some other 

sectors. In 2023, for example, 4% of global electricity demand came from aluminum smelters (IEA 

202419 at p. 19). According to IEA experts, “annual electricity consumption from data centers globally 

is about half of the electricity consumption from household IT appliances, like computers, phones 

and TVs."24  
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Data centers tend to be built in clusters. In places where data centers are concentrated, their share 

of power demand is much greater than the global average. In Loudon County, Virginia, USA—which 

has the world’s largest number of data centers by far—roughly a quarter of electricity demand 

comes from data centers.25 In Ireland (the largest data center hub in Europe), 21% of electricity 

demand came from data centers in 2023.26 In Singapore (one of the leading data center hubs in 

Asia), 7% of electricity demand comes from data centers.27 

ii. Future data center power demand 

Data center power demand is growing rapidly. Goldman Sachs Research projects 160% growth 

globally by 2030.15 EPRI projects 5–15% annual growth in the United States until 2030 (EPRI 20246 at 

p. 5), several research firms project annual growth in the 7–9% range in the European Union23,28,29 

and the Open Data Center Committee projects annual growth of roughly 10% in China.30 

The growth in data center power demand is coming from many sources, not just AI. Streaming 

services, 5G networks, social media and online gaming are all fueling surging data center 

demand.11,31 Yet AI is an important (and perhaps the most important) factor.30  

Although power demand from data centers is growing rapidly, it is smaller than power demand 

growth from several other sectors. In the IEA’s Stated Policies Scenario, power demand growth for 

electric vehicles (EVs) and space cooling in buildings are each more than three times greater than 

power demand growth for data centers. According to IEA, "data centers look set to remain a 

relatively small driver of overall electricity demand growth at the global level in the decade to come. 

Nonetheless, constraints at the local level may be significant.” (IEA 202432 at p. 188.) 

Those constraints are especially 

significant in countries including 

the United States, Ireland, 

Singapore and Japan. In the past 

several years, electric utilities in 

these countries and other 

locations have received a record-

breaking number of requests from 

data center operators for 

electricity interconnections. These 

requests are creating significant 

challenges. In Loudon Country, 

Virginia, for example, applications 

for electricity interconnection 

from data center operators are 

currently facing several years of 

delay. These applications are 

experiencing similar delays in 

many other locations as well.12,33  
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However, many of the applications for electricity interconnection submitted by data center operators 

do not represent actual demand. Due to delays and uncertain prospects for approvals, many data 

center operators have applied for more interconnections than they need, hoping that some 

applications will be successful. This “application frenzy” has some similarities to a run on a bank or 

the panic buying of essential goods at the start of the COVID epidemic.34  

Still, data center power demand is rising rapidly.35 In the past year, many research organizations, 

investment banks, consultancies and energy companies have released forecasts for increased power 

demand from data centers. Table 1 summarizes the results of some of these studies.  

 

Table 1. Power consumption projections for data centers.  

AUTHOR 
PROJECTED 
ANNUAL 
GROWTH RATE 

TIMEFRAME REMARKS  

Global  

IEA, Electricity 2024 

(January 2024)36 at p.31 

21% 2022–2026 Electricity consumption by data 
centers, cryptocurrencies and AI 
globally increases from 460 TWh in 
2022 to 620–1050 TWh by 2026 

IEA, Electricity Mid-Year 
Report  

(July 2024)19 at p.19 

19% 2022–2026 Electricity consumption of data 
centers increases from 1–1.3% of 
global demand in 2022 to 1.5–3% by 
2026 

Goldman Sachs Research, 
2024 

(May 14, 2024)15 

14.5% 2023–2030 Electricity consumption by global 
data centers increases from 411 TWh 
in 2023 to 1063 TWh in 2030; AI’s 
percent of global data center load 
increases from 3% in 2023 to 20% in 
2030 

Data centers increase from 1–2% of 
global electricity consumption now to 
3–4% by end of the decade 

SemiAnalysis, 202437 25% 2024–2030 Electricity consumption by data 
centers reaches 4.5% of global 
consumption by 2030 

Morgan Stanley, 202438 70% (GenAI only) 2024–2027 Global power usage from GenAI 
grows by 70% CAGR (compound 
annual growth rate) in 2024–2027 to 
224 TWh 

  

https://iea.blob.core.windows.net/assets/18f3ed24-4b26-4c83-a3d2-8a1be51c8cc8/Electricity2024-Analysisandforecastto2026.pdf
https://iea.blob.core.windows.net/assets/18f3ed24-4b26-4c83-a3d2-8a1be51c8cc8/Electricity2024-Analysisandforecastto2026.pdf
https://iea.blob.core.windows.net/assets/234d0d22-6f5b-4dc4-9f08-2485f0c5ec24/ElectricityMid-YearUpdate_July2024.pdf
https://iea.blob.core.windows.net/assets/234d0d22-6f5b-4dc4-9f08-2485f0c5ec24/ElectricityMid-YearUpdate_July2024.pdf
https://iea.blob.core.windows.net/assets/234d0d22-6f5b-4dc4-9f08-2485f0c5ec24/ElectricityMid-YearUpdate_July2024.pdf
https://www.goldmansachs.com/insights/articles/AI-poised-to-drive-160-increase-in-power-demand
https://www.goldmansachs.com/insights/articles/AI-poised-to-drive-160-increase-in-power-demand
https://www.semianalysis.com/p/ai-datacenter-energy-dilemma-race
https://www.morganstanley.com/ideas/ai-energy-demand-infrastructure
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United States33 

EPRI, 2024 (May 28, 2024)6 5–15% 

 

2023–2030 Electricity consumption by US data 
centers increases from 150 TWh in 
2023 to 196–404 TWh by 2030, 
taking 5–9.1% of 2030 electricity 
consumption  

BCG, 202439 

 

15–20% 2024–2030 Electricity consumption by US data 
centers increases to 800–1050 TWh 
(100–130 GW capacity) by 2030 

McKinsey, 202340 9.5% 2022–2030 Electricity consumption by US data 
centers increases from 149 TWh (17 
GW capacity) in 2022 to 307 TWh (35 
GW capacity) in 2030 

Columbia Center on Global 
Energy Policy, 202441 

 2024–2027 In 2027, GPUs will be roughly 4% of 
total US electricity sales and roughly 
1.7% of total electric capacity 

European Union 

Joint Research Centre EU, 
2024 at pp.3,823 

5–17% 2022–2030 Electricity consumption by EU data 
centers increases from 45–65 TWh in 
2022 to 98.5–160 TWh in 2030 

Savills, 202429  8.3% 2024–2027 27% increase to 13.1 GW capacity in 
2027 

Mordor Intelligence, 202428 7.4% 2024–2029 Data centers reach 3.2% of EU 
electricity consumption in 2030, 
citing official EU sources 

China 

China State Grid Energy 
Research Institute, 202142 

7.1% 2020–2030 Electricity consumption by data 
centers increases from 200 TWh in 
2020 (2.7% of total power demand) 
to 400 TWh in 2030 (3.7% of total 
power demand) 

China Com-service White 
paper, 202343 

6% 2022–2025 Electricity consumption by data 
centers in China increases from 101 
TWh in 2022 to 120 TWh in 2025 

Japan 

Japan Transmission 
Operators, 202421 

6–12% 2022–2050 Electricity consumption by data 
centers owned by three leading 
communications companies in Japan 
increases from 8.6 TWh in 2022 
(slightly less than 1% of total power 
demand) to 43–211 TWh in 2050 

https://www.epri.com/research/products/3002028905
https://www.linkedin.com/pulse/us-data-center-power-outlook-balancing-competing-consumption-lee-iz4pe?trk=article-ssr-frontend-pulse_more-articles_related-content-card
https://www.mckinsey.com/industries/technology-media-and-telecommunications/our-insights/investing-in-the-rising-data-center-economy
https://www.energypolicy.columbia.edu/projecting-the-electricity-demand-growth-of-generative-ai-large-language-models-in-the-us/
https://www.energypolicy.columbia.edu/projecting-the-electricity-demand-growth-of-generative-ai-large-language-models-in-the-us/
https://publications.jrc.ec.europa.eu/repository/handle/JRC135926
https://publications.jrc.ec.europa.eu/repository/handle/JRC135926
https://www.savills.com/research_articles/255800/362604-0
https://www.mordorintelligence.com/industry-reports/europe-data-center-power-market
https://english.www.gov.cn/statecouncil/ministries/202112/09/content_WS61b13edac6d09c94e48a1f81.html#:%7E:text=According%20to%20a%20report%20from%20China%27s%20State%20Grid,for%202.7%20percent%20of%20the%20country%27s%20electricity%20consumption.
https://english.www.gov.cn/statecouncil/ministries/202112/09/content_WS61b13edac6d09c94e48a1f81.html#:%7E:text=According%20to%20a%20report%20from%20China%27s%20State%20Grid,for%202.7%20percent%20of%20the%20country%27s%20electricity%20consumption.
https://aimg8.dlssyht.cn/u/551001/ueditor/file/276/551001/1684888884683143.pdf
https://aimg8.dlssyht.cn/u/551001/ueditor/file/276/551001/1684888884683143.pdf
https://www.jaif.or.jp/en/news/7022
https://www.jaif.or.jp/en/news/7022
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RESOURCE ADEQUACY 
by Mariah Frances Carter and David Sandalow 

"Resource adequacy” is the ability of an electric utility to meet the needs of its customers even 

during periods of peak usage or unexpected disruptions. 

When a utility experiences resource adequacy problems, several issues can arise:  

▪ First, blackouts or brownouts become more likely, especially during extreme weather 

events and other periods of high demand. This occurs because the utility may not have 

enough generation capacity or demand response resources to meet the peak electric 

load.  

▪ Second, higher electricity prices are possible because the utility may need to purchase 

power at premium prices or rely on expensive, less efficient and more polluting peaker 

plants to meet demand. 

▪ Third, the stability and resilience of the electricity system can be compromised, causing 

operational problems with grid management. 

Surging power demand—in part due to data centers—is causing resource adequacy problems 

in some regions around the world. This demand surge contrasts sharply with the experience in 

most developed countries in recent years. For most of the past two decades, power 

consumption in the United States, Europe and Japan was mostly flat. However, this is changing 

dramatically as new factories, EVs, data centers, crypto currencies and other sources create 

significant new demand for electric power. The International Energy Agency (IEA) projects 

power demand in the United States will grow 1.5% per year in 2024–2026, with a third of that 

growth due to data centers (IEA, 202436 at p. 111). The Japanese government recently released 

a report forecasting an increase in long term electricity demand for the first time in twenty 

years, due in significant part to semiconductor plants and data centers. The report estimates 

that electricity demand will grow from 1 trillion kilowatt-hours (kWh) in this decade to about 

1.35-1.5 trillion kWh in 2050.44  

Power demand is growing especially fast in regions where data centers are clustered. In the 

United States, this includes Northern Virginia, Dallas-Ft. Worth, Chicago, Silicon Valley and 

Phoenix. (The Phoenix-based Arizona Public Service recently estimated average load growth in 

its service territory of 3.7% per year from 2023 to 2038. This is an additional 24 TWh of annual 

electricity consumption, with more than half of that increase coming from data centers.)45 

Globally, top areas include Frankfurt, London, Paris, Singapore, Tokyo, Hong Kong, Sydney and 

Querétaro (Mexico). All of these regions are facing 20–25% annual growth in data center 

capacity with significant related power demands.46  
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C. Current GHG Emissions from AI 

Current overall impacts of AI on GHG emissions could be positive or negative. Assessing those 

impacts with confidence is difficult due to gaps in data collection, a lack of standard assessment 

methodologies and the rapid pace of AI deployment in recent years. 

Recent studies suggest the following:  

▪ AI operational emissions are less than 1%—and perhaps much less than 1%—of total GHG 

emissions. 

▪ AI upstream emissions contribute to AI’s GHG footprint. Much better data are needed to 

assess the magnitude of these emissions with confidence.  

▪ The GHG impacts of applying AI in countless thousands of processes throughout the economy 

are difficult to assess. These impacts could be beneficial on a net basis, outweighing AI 

operational emissions, AI upstream emissions and other GHG increases associated with AI. 

However, these impacts could also be negative on a net basis, increasing global emissions. 

This section discusses each of these topics in turn. 

i. AI operational emissions 

Based on the existing literature, it is reasonable to conclude that GHG emissions from computing 

operations for AI are less than 1%—and perhaps much less than 1%—of global GHG emissions.  

Relevant studies include the following. 

▪ In a 2024 Nature article, Amy Luers et al. wrote that “in terms of total global greenhouse-gas 

emissions, we calculate that AI today is responsible for about 0.01%.”5 The estimate is based 

on the power consumption of AI processors in 2023. 

▪ In a 2022 Nature Climate Change article, Lynn Kaack et al. estimated that cloud and hyperscale 

data centers are responsible for 0.1–0.2% of global GHG emissions and that roughly 25% of 

their workloads are related to ML.3 

▪ In a 2022 study, Sasha Luccioni et al. found that GHG emissions from training several current 

large language models (LLMs), including GPT-3 and BLOOM, ranged from roughly 30 to 550 

tonnes CO2e.48 In a 2021 paper, David Patterson et al. provided similar estimates (noting that 

Utilities in regions with high concentrations of data centers are responding to this increased 

demand with new generation, demand response and other tools. In Ohio, one utility is asking 

permission to impose special tariffs on data center customers to help pay for expanding and 

strengthening the grid.47 However the growth in power demand is outpacing the utilities’ 

ability to respond in some places. Power connections for new data centers will need to be 

delayed—in some cases for years—to address resource adequacy concerns.12 
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the average commercial plane emits roughly 180 tonnes CO2e flying from San Francisco to 

New York).49 (550 tonnes CO2e is roughly 0.000001% (1x10-8) of global GHG emissions, which 

were roughly 54 GtCO2e in 2022.)50 

▪ In a 2023 report, IEA estimated that “Data centres and data transmission networks are 

responsible for 1% of energy-related GHG emissions.” The estimate included both upstream 

and operational emissions.51  

▪ In a 2021 paper in Patterns, Charlotte Freitag et al. estimated that 1.8–2.8% of global GHG 

emissions came from the information, communications and technology sector. This estimate 

included both upstream and operational emissions.52 

These studies explore related but somewhat different topics, offering a range of results. Some of the 

studies are based on data that are several years old and therefore partly out of date. (The AI market 

is growing rapidly—at compound annual growth rates in the range of 35% according to some 

estimates.53-55) However, combined with the estimates of AI’s share of data center workload 

(summarized in Section B of this chapter above), these studies suggest that 1% is a likely upper 

bound for the share of global GHG emissions from computing operations for AI and that the actual 

share could be much less. 

ii. AI upstream emissions 

Upstream emissions from AI must be part of 

any complete GHG accounting for AI; however, 

the literature on upstream emissions from AI is 

sparse.56,57 A research agenda to better assess 

the magnitude of AI upstream emissions 

should consider several factors, including the 

following. 

First, many upstream AI activities, such as 

manufacturing silicon chips and making steel 

and cement for data centers, rely heavily on 

fossil fuels for energy. This contrasts with AI 

operations at data centers, where power use is 

often matched with renewable energy.  

Second, major data center operators, including Google and Microsoft, report that the vast majority 

of their emissions are Scope 3 emissions (defined as “indirect emissions in the value chain of a 

company, other than emissions from the generation of purchased energy”).58 For Google, the figure 

is 75% (Google, 202459 at p. 38), and for Microsoft it is 96% (Microsoft 202460 at p. 15). Scope 3 is a 

broad category that includes many sources of emissions beyond AI upstream emissions, but still 

these corporate reports suggest the possibility that upstream emissions from AI could be significant 

and merit attention. (Again, more research is needed.)    

 



  

ICEF AI for Climate Change Mitigation Roadmap (Second Edition)  

 

November 2024  Chapter 15: Greenhouse Gas Emissions from AI - 15-11 

  

 

Third, studies that have begun to explore topics related to upstream emissions from AI include:        

▪ A 2024 paper in Communications of the ACM by David Patterson et al., which found that 

“embodied server CO2e was ∼115x larger than ML operational CO2e in Google datacenters in 

2021” (at p.95).14 

▪ A 2024 IEEE paper by Carole-Jean Wu et al., which found that upstream GHG emissions for 

University LM, a multilingual language translation model, were roughly 50% of operational 

emissions.61 

▪ A 2021 study in HAL Open Science by Maxime Pelcat, which found that annual emissions from 

semiconductor manufacturing were roughly 76.5 Mt CO2e globally (0.15% of global GHG 

emissions).62 Semiconductor manufacturing is an important part of the value chain for AI, 

although semiconductor chips are used in countless thousands of products and only a small 

fraction of semiconductor chips manufactured each year are used in AI. 

iii. Impacts of AI applications on emissions 

Data quantifying the current impacts of AI applications on GHG emissions are sparse.  

The phrase “impacts of AI applications on GHG emissions” is potentially confusing. In this context, it 

means how use of AI impacts GHG emissions, not including AI operational emissions or AI upstream 

emissions. For example: 

▪ When a municipality uses AI tools to help with traffic management, how much do vehicle 

emissions fall?  

▪ When a commercial building uses AI tools to help with energy management, how much do 

emissions at that building and at the local power grid fall? 

▪ When an industrial facility uses AI tools in its operations, how much do emissions at that 

facility rise or fall? 

A few studies have estimated the current GHG emission benefits that come from using AI in some 

settings.  

▪ In a 2021 report, BCG experts reported that their clients had achieved 5–10% emissions 

reductions using AI63  

▪ In a 2021 report, Capgemini reported that organizations had reduced GHG emissions by 13% 

using AI64  

However, the literature on this topic is sparse. Qualitative and anecdotal assessments are more 

common than quantitative assessments. Few if any studies have attempted to quantify the potential 

emissions benefits of AI-enabled breakthroughs in areas such as battery chemistry or carbon capture. 

Chapters 3–13 of this Roadmap contain many examples of ways in which AI is currently being used to 

reduce GHG emissions, including the use of AI to monitor methane emissions, optimize fertilizer 

application, improve low-carbon steel manufacturing and much more. Taken together, these and 

other AI applications may already be having a meaningful impact in reducing GHG emissions. 

However, much more data collection and analysis are needed to provide rigorous estimates.   
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The literature on the extent to which AI applications may be increasing GHG emissions is especially 

sparse. When AI is used in carbon-intensive industries, such as mining, manufacturing and oil-and-

gas production, AI could increase GHG emissions by making carbon-emitting activities more cost-

competitive. In recent years, the oil and gas industry has rapidly adopted AI tools in exploration and 

production activities, improving operational efficiencies and cutting costs.65-67 Lower-cost oil and gas 

production seems likely to lead to higher GHG emissions, although the analysis is complicated by (1) 

the potential for cheap natural gas to reduce GHG emissions by displacing coal, if leakage rates for 

that natural gas are kept to a minimum, and (2) the partially-managed nature of global oil markets. 

(See text box below.) 

Some AI applications are currently reducing GHG emissions. Other AI applications are probably 

increasing GHG emissions. Comprehensive data on the cumulative impacts of AI applications on GHG 

emissions are lacking. 

iv. Further study 

In an interesting 2024 paper in Scientific Reports, Bill Tomlinson et al. compare (1) GHG emissions 

that come from using AI for writing and drawing tasks (both upstream and operational emissions) 

with (2) the GHG footprint of humans performing the same tasks. Tomlinson et al. found that “AI 

systems emit between 130 and 1500 times less CO2e per page of text generated compared to human 

writers, while AI illustration systems emit between 310 and 2900 times less CO2e per image than 

their human counterparts.”68  

The literature on GHG emissions from AI is growing.69-71 However there are no widely used protocols 

or standards for measuring GHG emissions from AI systems or the GHG benefits of AI applications. 

Improved measurement protocols and standards—and much more research—are needed to provide 

precise and confident estimates of current emissions. 

 

AI IN THE OIL AND GAS INDUSTRY 
AI is widely used in the oil and gas industry.72-74 Some ways AI is used may increase GHG 

emissions; other ways may decrease emissions. On a net basis, AI appears likely to be 

increasing GHG emissions from the oil and gas industry, however no studies have rigorously 

analyzed this topic to date.  

Use of AI use in the oil and gas industry has grown rapidly in recent years. AI is being used for 

predictive maintenance, supply chain optimization, performance improvements at refineries 

and much more. AI is increasing yields from reservoirs, expanding areas where drilling is 

economic and cutting costs in exploring for oil and gas. Many industry testimonials cite the 

benefits of AI for oil and gas production.75-77  
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D. Future Greenhouse Gas (GHG) Emissions from AI 

Future GHG emissions from AI are highly uncertain. AI has the potential to increase or decrease GHG 

emissions in the years ahead, in amounts that could be small or significant. The results will depend 

on a range of policy and investment decisions. 

  

To the extent that AI is helping oil and gas companies produce more oil and gas at lower cost, 

higher GHG emissions are likely to be one result. In general, lower production costs for goods 

put downward pressure on prices for those goods, increasing consumption. More 

consumption of fossil fuels, such as oil and gas, generally increases GHG emissions.  

However, several factors complicate the analysis of AI’s impact on GHG emissions from the oil 

and gas sector.  

First, natural gas replaces coal in many places, with cheaper natural gas leading to less coal 

use. Natural gas produces roughly half the GHG emissions per unit of energy as coal when 

burned, so more natural gas use and less coal use can reduce GHG emissions—although only if 

natural gas leaks are kept to a minimum. Thus, while cheaper natural gas production due to AI 

creates significant risks of higher GHG emissions, there are scenarios in which it could do the 

opposite. The results will depend on a number of factors that vary by location. 

Second, the global oil market is not a classic competitive market. Prices are determined in 

substantial part by the decisions of key producers (including in particular the Kingdom of Saudi 

Arabia), who adjust supply with the goal of keeping prices within ranges they consider 

desirable. In the partially managed global oil market, lower production costs enabled by AI may 

lead to lower prices and greater consumption but less directly and immediately than in more 

competitive markets.  

Third, AI is also used in the oil and gas industry to help reduce GHG emissions. AI is helping to 

detect and control methane leaks, improve carbon capture processes and address supply chain 

emissions. Although these efforts appear to be smaller in scale than the use of AI to enhance 

oil and gas production, they have the potential to offset some of the GHG emissions increases 

from AI use in the industry.78-80  

The bottom-line is that use of AI in the oil and gas sector has the potential to both increase and 

decrease GHG emissions. AI appears likely to be increasing GHG emissions from the oil and gas 

sector on a net basis, but a confident assessment requires more rigorous analysis. 
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In the short-term, the surging demand for AI seems likely to increase GHG emissions.  

▪ Although major data center operators would like to buy 100% low-carbon power, new data 

center demand exceeds the supply of low-carbon power in many locations. Growing demand 

for data center use, driven in part by AI, has led to deferral of some coal plant retirements in 

the US17,81 and to construction of new natural gas plants in several locations, including Dublin 

and Phoenix.82,83  

▪ Decarbonization of the processes and industries central to AI upstream emissions—including 

manufacturing silicon chips, steel and cement—is moving slowly.84,85 

▪ Adoption of emissions-reducing applications of AI may not keep pace with increases in AI 

operational emissions and AI upstream emissions (although data on this topic are sparse). 

In the medium- to long-term, AI could increase or decrease GHG emissions. While AI operational 

emissions and AI upstream emissions may both grow, AI will also be deployed in countless ways to 

accelerate decarbonization and reduce emissions. (See Chapters 3–13 of this Roadmap.) The net 

impact of AI on GHG emissions is uncertain.  

A few studies have estimated future GHG emissions from AI.  

▪ In a 2024 report, Morgan Stanley projected that CO2 emissions from generative AI will reach 

0.2–0.3% of global power sector CO2 emissions (which is 0.1–0.15% of global CO2 emissions) in 

2027. Morgan Stanley said it expects the “net sustainability benefits from GenAI to be positive” 

(Morgan Stanley, 202438 at p. 4). 

▪ In a 2021 study, BCG experts estimated that AI could reduce 5–10% of global GHG emissions 

by 2030, based on experiences with BCG clients.63,86 

Several other studies have estimated future GHG emissions from data centers (including GHG 

emissions from data center operations unrelated to AI). 

▪ In a 2024 report, Goldman Sachs found that “carbon dioxide emissions of data centers may 

more than double between 2022 and 2030.”87  

▪ In a 2024 blog post, International Monetary Fund (IMF) experts projected that CO2 emissions 

from data centers could reach 0.5% of the global total by 2027.88 

Future GHG emission from AI will be the sum of (1) AI operational emissions, (2) AI upstream 

emissions and (3) the GHG emissions impacts of AI applications (which could be positive or negative). 

The uncertainty with respect to each of these categories is significant. We consider each of them—as 

well as future demand for AI—below. 

i. AI operational emissions 

Emissions from computing operations for AI in the years ahead will be a function of (1) 

improvements in the energy efficiency of AI hardware, (2) improvements in the energy efficiency of 

AI software, (3) rebound effects from these improvements and (4) the percentage of computing 

operations powered by new low-carbon sources. There is considerable uncertainty with respect to all 

these factors.  
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a) Hardware efficiency  

The energy efficiency of AI equipment has improved significantly in the past decade. This trend 

continues today and is likely to continue in the future. However, predicting the precise pace of 

improvements in the energy efficiency of AI equipment is challenging.  

Some recent improvements in energy efficiency have been dramatic. Between 2015 and 2021, for 

example, data center workload increased by 260% while data center energy use increased by only 

10%.15,89 

Similar improvements continue today. NVIDIA’s new Blackwell GPU trains large AI models with 

roughly 25% of the power needed for comparable tasks by older GPUs.90,91 NVIDIA reports an 

astounding 45,000x improvement in the energy efficiency of their GPUs running LLMs in the past 

eight years.91 In 2020, average power use effectiveness (PUE) across the industry was 1.58. (PUE is 

the ratio of total energy use at a data center to the energy used by its computing equipment.) Newer 

data centers have demonstrated PUEs of 1.1.61,92-96  

These improvements in energy efficiency are likely to continue. Miniaturization and architectural 

optimization will likely drive continued energy efficiency in GPUs in the years ahead.90,91,97 More 

efficient and higher-performing computational equipment, such as tensor processing units (TPUs), 

also offer the promise of continued improvements in energy efficiency.92-94 More radical design 

concepts, such as analog-AI chips, may also result in major improvements in energy efficiency.98 

Studies of PUE at data centers suggest continued energy-efficiency improvements are possible.61,92-96 

Yet predicting the pace at which the energy efficiency of AI equipment will improve is challenging. 

Hardware advances, such as new chip architectures, often follow unpredictable innovation cycles, 

making it difficult to forecast specific gains. Breakthroughs in quantum computing, neuromorphic 
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chips or AI itself could drastically improve efficiency. Supply chain disruptions or geopolitical forces 

could slow innovation. Significant energy efficiency gains in AI equipment are likely, but precise 

projections are challenging.   

b) Software efficiency  

Advances in AI models have significantly improved the energy efficiency of AI in recent years. These 

advances include development of more efficient algorithms, such as sparse models and pruning 

techniques, which reduce the number of computations required to achieve the same or better 

results. Optimization strategies like quantization and knowledge distillation have also enabled AI 

models to run more efficiently on existing hardware. As a result, AI systems now require less 

computational power and energy to perform complex tasks, reducing their overall carbon 

footprint.99,100 

Significant work is underway to further improve model architectures using these techniques and 

others.92,101 Nodal and clustering optimization could have significant impacts on the overall carbon 

intensity of compute-heavy parts of an AI model’s lifecycle. Researchers across major markets (e.g., 

the United States and China) have begun to investigate this potential, but more analysis is needed as 

new hardware becomes available.102  

As with hardware efficiency improvements, projecting the pace of change in software development 

is challenging. The development of new algorithms and optimization techniques is inherently 

uncertain, as breakthroughs in AI often come from unexpected research directions and can be 

difficult to foresee.  

The International Standards Organization (ISO) recently published a methodology for evaluating a 

software system’s “software carbon intensity (SCI).” The methodology is intended to “help software 

practitioners make better, evidence-based decisions during system design, development, and 

deployment, that will ultimately minimize carbon emissions.”103 Widespread attention to the SCI 

methodology could help reduce emissions from AI systems. 

c) Rebound effects  

In combination, the hardware and software energy advances described above offer the potential for 

significant—indeed extraordinary—improvement in the energy efficiency of AI in the years ahead. 

Whether these energy efficiency gains will have a significant impact on GHG emissions from AI is 

uncertain. 

A core challenge in projecting GHG emissions from AI is the rebound effect (sometimes called 

“Jevons Paradox”).104,105 As AI tools become more energy efficient and therefore cost less, use cases 

for AI will expand. The power demand for AI from these new use cases could offset the energy 

savings from hardware and software energy efficiency improvements in part or in whole. 

The rebound effect is a well-studied phenomenon in other contexts, including automotive fuel 

efficiency standards, where the rebound effect is estimated to offset 10–30% of a fuel efficiency 

standard’s benefits.106-108 A 2014 paper in the American Economic Journal by Lucas Davis et al. found 
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significant rebound effects in Mexican programs to replace energy inefficient air conditioners and 

refrigerators.109 

There is little research on the likely rebound effect as the energy efficiency of AI hardware and 

software improves in years ahead. Yet general trends in the industry suggest rebound effects may be 

significant. As significant energy efficiency improvements in the latest generation of GPUs were being 

announced in 2024, commercial orders for those GPUs skyrocketed and applications for new data 

center capacity continued to climb. A wide range of industry participants appear to believe that 

cheaper and more efficient computing power will open up new potential applications for AI, not cut 

back on overall power demand from the industry.39,57 

d) Low-carbon power  

The amount of GHG emissions from AI operations in the years ahead will be determined in significant 

part by the amount of low-carbon power used for these operations. 

Many large data center operators are deeply committed to using low-carbon power. Indeed the 

world’s largest data center operators—Amazon, Microsoft, Google and Meta—are among the 

world’s largest purchasers of renewable power.1,110-112 However data center operators face 

significant constraints in procuring sufficient low-carbon power. Permitting delays, inadequate 

transmission infrastructure and land-use constraints are among the major barriers.35 

These constraints complicate forecasting. The amount of GHG emissions from AI operations depends 

not just on the pace at which power demand for AI grows, but on how that power is generated. A 

data center or edge device powered by a grid with significant coal generation will emit far more 

GHGs than a data center co-located with a new low-carbon power plant. 

The indirect effects of data center operators purchasing low-carbon power are also a complicating 

factor. If the supply of low-carbon power in a region is constrained, the purchase of low-carbon 

power by a data center operator may force other electricity consumers to purchase power from 

higher-carbon sources, indirectly increasing GHG emissions. This may currently be happening in the 

eastern United States.113,114       

(Similar concerns have been raised with respect to hydrogen produced with renewable power, 

known as “green hydrogen.” The European Union and United States have both adopted rules 

requiring that green hydrogen facilities use new or additional renewable power in order to receive 

favorable regulatory or tax treatment. There are proposals that data centers be subject to similar 

additionality requirements.)115-118 
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A potential solution to the problem of indirect 

GHG emissions increases is for data center 

operators to develop new low-carbon power 

sources for new data centers. One innovative 

approach is the Clean Transition Tariff 

developed by Google and others, in which 

utility regulators establish a rate structure 

under which data centers and other large 

customers pay more for new low-carbon 

power projects using emerging clean energy 

technologies.119,120  

Another important development is the 

emergence of “carbon-aware computing,” 

which schedules intensive computing tasks 

based on the carbon intensity of the power 

available to perform the computation.121 By 

leveraging near-real-time data and models about renewable generation, a carbon-aware computing 

system can defer intensive, non-urgent AI model training tasks for time periods when renewable 

generation is abundant or curtailed. Intensive computing tasks could also be transferred to data 

centers in different locations where low-carbon electricity is available (taking into account the 

emissions associated with the data transfer).122-124 

The strong commitment of leading data center operators to buying low-carbon power will help 

minimize the growth of GHG emissions in connection with AI in the years ahead. But there are 

constraints on the ability of data center operators to buy low-carbon power. Projections of low-

carbon power’s role in AI computing operations in the years ahead should allow for a range of 

possible outcomes. 

ii. AI upstream emissions 

Upstream emissions from AI include emissions from manufacturing silicon chips, making steel and 

cement for data centers, and taking other steps necessary to build the physical infrastructure for AI 

operations. Many of these activities rely heavily on fossil fuel combustion and have significant GHG 

footprints. Future upstream emissions from AI will depend on growth in demand for AI and the pace 

at which these activities decarbonize.  

Progress in decarbonizing some of these activities has been slow. Some forms of silicon production 

have a higher carbon footprint today than 20 years ago.125 Steel and cement making are often 

considered “hard-to-abate” sectors, which are difficult to decarbonize.126 (Fortunately AI could help 

accelerate decarbonization of some of these sectors. See Chapter 5 of this Roadmap.) The prospects 

for decarbonizing many of these sectors faster than AI scales may not be good, suggesting that 

upstream GHG emissions from AI may rise in the years ahead. However much more research is 

needed to make confident projections on this topic.  
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iii. Emissions impacts of AI applications 

In the years ahead, the impacts of AI applications on GHG emissions could be positive or negative. 

Indeed, these impacts could be very positive or very negative. The range of uncertainty is enormous.  

As noted in Section C (iii) above, the phrase “impacts of AI applications on GHG emissions” is 

potentially confusing. In this context, it means how use of AI impacts GHG emissions, not including AI 

operational emissions or AI upstream emissions. For example, when a municipality uses AI tools to 

help with traffic management, how much do vehicle emissions fall? When an industrial facility uses 

AI tools in its operations, how much do emissions at that facility rise or fall? 

A few studies have attempted to project the potential emissions benefits of AI applications in the 

years ahead.  

▪ A 2023 report by BCG and Google found that “AI has the potential to unlock insights that could 

help mitigate 5–10% of GHG emissions by 2030”127 

▪ A 2021 Capgeminii study found that executives interviewed believed AI could reduce overall 

GHG emissions 16% by 2024–202664  

▪ A 2019 report by PricewaterhouseCoopers (PwC)/Microsoft found that AI could reduce global 

GHG emissions by 1.5–4% by 2030 compared to business-as-usual pathways 

However, the literature on this topic is sparse, and challenges in making projections are considerable. 

Data with respect to the impacts of AI applications on GHG emissions are limited. Evaluating the 

benefits of AI applications involves considering a counterfactual—what would happen in the same 

setting without AI? Such counterfactuals are often difficult to define with rigor. The potential for 

rebound effects from efficiencies introduced by AI creates analytic difficulties. Finally, AI is a 

transformational technology at early stages of development. Confidently predicting its capabilities or 

how it will be deployed beyond the short-term is difficult at best.  

The dozens of AI applications discussed in this roadmap highlight the enormous potential for AI 

applications to reduce GHG emissions in the years and decades ahead. Some of these reductions are 

likely to be incremental—gains of perhaps 10–20% through improved operations. Other reductions 

could be transformational—such as dramatically reducing GHG emissions by discovering novel 

materials. At the same time, using AI in carbon-intensive industries could significantly increase 

emissions, if AI helps carbon-emitting activities become cheaper or more competitive. 

iv. Demand for AI  

The pace of AI demand growth will help determine future GHG emissions in all three of the 

categories discussed above (AI operational emissions, AI upstream emissions and the emissions 

impacts of AI application). Demand for AI has been growing quickly for the past decade and is surging 

today. Private sector investment in AI grew 18x between 2013 and 2021,128 and private sector 

demand for AI more than doubled from 2017 to 2022.129 With the explosion of interest in AI 

following the release of ChatGPT in November 2022, demand for AI began to grow even faster. Many 

forecasters predict that AI will grow dramatically in the years ahead—at compound annual growth 

rates in the range of 30–35% or more.11,53-55 
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However, the pace at which demand for AI grows in the years and decades ahead is very uncertain. 

Some analysts question whether AI will deliver productivity benefits consistent with the enormous 

current investments in the technology,130 suggesting that projections of rapid demand growth could 

be overstated. Regulatory frameworks, public attitudes, economic conditions, technology 

development and geopolitical trends will all shape demand growth. AI is a transformational, general-

use technology at an early stage of adoption in most sectors. High growth rates are likely, but the 

range of uncertainty with respect to these rates is considerable. 

E. Conclusion 

AI’s impacts on GHG emissions could be positive or negative, both today and in the years ahead. 

Estimating with precision is challenging due to limited data and other challenges.4 

However, there is significant potential for the overall GHG benefits of AI to exceed its costs. This 

could happen if (1) some of the emissions-reducing applications of AI discussed in this Roadmap 

deliver significant results and (2) AI operational emissions and AI upstream emissions grow slowly or 

fall in the years ahead. However, the opposite result is possible as well: AI applications could fail to 

reduce GHG emissions and AI operational emissions and AI upstream emissions could climb in the 

years ahead.  

Supportive policies and commitment on the part of key stakeholders are needed to realize the full 

potential of AI to reduce GHG emissions. 
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F. Recommendations 

1. AI developers, data center owners, energy experts, GHG emissions experts and standards 

organizations should establish robust methodologies and standards for reporting energy use and 

GHG emissions across the AI value chain. 

2. AI developers and data center owners should report energy use and GHG emissions associated 

with their AI workloads. 

3. Governments should adopt regulations that require AI developers and data centers owners to 

report their energy use and GHG emissions. 

4.  AI developers should take steps to reduce the carbon intensity of their models, using the ISO’s 

methodology for evaluating their models’ Software Carbon Intensity (SCI).103 

5. Data center owners should prioritize adoption of energy-efficient hardware for AI operations and 

optimize AI workloads based on carbon-aware computing strategies.  

6. Governments should promote and support policies that enable and incentivize data center 

owners to purchase low-carbon energy, including supporting new low-carbon power generation 

and grid expansion in regions with high concentrations of AI-driven data center growth. 

7. National governments, AI developers, data center owners and philanthropies should fund 

researchers to develop a set of scenarios to quantify the effects that AI could have on greenhouse 

gas emissions under a range of assumptions. These scenarios should combine quantitative 

models with expert consultations, rigorously exploring a range of possible futures. The 

Intergovernmental Panel on Climate Change (IPCC) should include these scenarios in a special 

report on AI to be released within two years.5  

8. All stakeholders should review and consider the dozens of other recommendations throughout 

this Roadmap to help reduce GHG emissions using AI tools. 
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